Posted: October 24, 2019

Innovations in material science are as essential to modern life as indoor plumbing―and go about as unnoticed.

For example, innovations in semiconducting devices continue to enable the transmission of more information, faster and through smaller hardware―such as through a device that fits in the palms of our hands. 

Improvements in imaging techniques have made it possible to collect mounds of data about the properties of the nanomaterials used in such devices. (One nanometer is one billionth of a meter. For scale, a strand of human hair is between 50,000 and 100,000 nanometers thick.)

“The challenge is that analytical approaches that produce human-interpretable data remains ill-equipped for the complexity and magnitude of the data,” says Joshua Agar, assistant professor of materials science. “Only an infinitesimally small fraction of the data collected is translated into knowledge.”

Read More